一道数学题,初三的 10

 我来答
百度网友4327fcbb9b
2015-04-11 · 知道合伙人教育行家
百度网友4327fcbb9b
知道合伙人教育行家
采纳数:26423 获赞数:292073
从师范学校毕业后一直在现在单位工作

向TA提问 私信TA
展开全部

到以下网页参考答案,(比较长. )

http://www.7wenta.com/topic/9412E27D586BEA0E710ABDE875AC895D.html

实际应用:如图3,在某次军脊握事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且搏橡两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向行驶60海里到达E处,同时舰艇乙沿北偏东50°的方向行驶100海里到达F处,此时指挥中心观测到甲、乙两舰艇之间的夹角(∠基野旁EOF)为70°,试求此时两舰艇之间的距离.

邹昕
2015-04-12 · TA获得超过1238个赞
知道小有建树答主
回答量:394
采纳率:83%
帮助的人:110万
展开全部
设:提高单价n元
则,这时候销售量为(400-20n),商店购进单价为20*(400-20n),商店售出单价为(30+n)
∴此时的利润为
(30+n)*(400-20n)-20*(400-20n)
=[(30+n)-20]*(400-20n)
=(10+n)*(400-20n)
=-20(n平方-10n-200)
又∵要在,即求-20(n平方-10n-200)的最大值
∴令-20(n平方-10n-200)=0,求该一元二次方程图象的顶点,则当n取-[200/2*(-20)]时,该方程取得最大值
∴n=5
故,当销售单价提高到30+5=35元时,能在半月内获得最大利润

考点:二次函数的应用.专题:销歼庆族售问题.分析:总利润=每件日用品的利润×可卖出的件数,差模利用公式法可得二次函数的最值,减去原价即为提高的售价.解氏弊答:解:设销售单价为x元,销售利润为y元.
根据题意,得y=(x-20)[400-20(x-30)]=(x-20)(1000-20x)=-20x2+1400x-20000,
当x=-14002×(-20)=35时,y最大=4500,
这时,x-30=35-30=5.
所以,销售单价提高5元,才能在半月内获得最大利润4500元.点评:考查二次函数的应用;得到半月内可卖出日用品的件数是解决本题的难点.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式