求∫x²lnxdx的不定积分

 我来答
帐号已注销
2019-03-15 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:168万
展开全部

∫x²lnxdx=(1/3)x^3lnx-(1/9)x^3+c。c为积分常数。

解答过程如下:

∫x²lnxdx

=(1/3)∫lnxdx^3

=(1/3)x^3lnx-(1/3)∫x^3*(1/x)dx

=(1/3)x^3lnx-(1/3)∫x^2dx

=(1/3)x^3lnx-(1/9)x^3+c

扩展资料:

分部积分:

(uv)'=u'v+uv'

得:u'v=(uv)'-uv'

两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx

即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式

也可简写为:∫ v du = uv - ∫ u dv

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

吉禄学阁

推荐于2017-06-17 · 吉禄学阁,来自davidee的共享
吉禄学阁
采纳数:13655 获赞数:62478

向TA提问 私信TA
展开全部
∫x²lnxdx
=(1/3)∫lnxdx^3
=(1/3)x^3lnx-(1/3)∫x^3*(1/x)dx
=(1/3)x^3lnx-(1/3)∫x^2dx
=(1/3)x^3lnx-(1/9)x^3+c
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友af34c30f5
2015-03-19 · TA获得超过4.4万个赞
知道大有可为答主
回答量:1.8万
采纳率:65%
帮助的人:6797万
展开全部

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
无地自容射手
2019-12-23 · TA获得超过3793个赞
知道小有建树答主
回答量:4006
采纳率:60%
帮助的人:281万
展开全部
求∫x²lnxdx的不定积分这道题很简单,这道题的不定积分答案就是lnlnx
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式