相似矩阵为什么有相同的特征多项式

 我来答
崇元化65
高粉答主

2021-01-02 · 说的都是干货,快来关注
知道小有建树答主
回答量:202
采纳率:100%
帮助的人:3.2万
展开全部

因为矩阵A的特征多项式就是
f(x)=|xI-A|,其中||是行列式,而I是与A同阶的单位阵,设矩阵B与A相似,即存在同阶可逆矩阵T,使得 B=T^(-1)AT,这里
T^(-1) 是矩阵T的逆,根据特征多项式的定义,B的特征多项式为g(x)=|xI-B|。

设A,B都是n阶矩阵,若存在可逆矩阵P,使P^(-1)AP=B,则称B是A的相似矩阵, 并称矩阵A与B相似,对进行运算称为对进行相似变换。

扩展资料:

n阶矩阵A与对角矩阵相似的充分必要条件为矩阵A有n个线性无关的特征向量。 定理的证明过程实际上已经给出了把方阵对角化的方法。

若n阶矩阵A有n个相异的特征值,则A与对角矩阵相似。对于n阶方阵A,若存在可逆矩阵P, 使其为对角阵,则方阵A可对角化。

参考资料来源:百度百科-相似矩阵

电灯剑客
科技发烧友

推荐于2016-12-02 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:5003万
展开全部
A=PBP^{-1} => λI-A=P(λI-B)P^{-1} => det(λI-A)=det(λI-B)det(P)det(P^{-1})
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一定会上岸叻
2021-11-02
知道答主
回答量:1
采纳率:0%
帮助的人:438
展开全部
|λE-B|=|λE-P(-1)AP|=|P(-1)(λE-A)P|=|λE-A|
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式