问几道因式分解的题 请详细解答,谢谢!
(1)5x^2+7x-6(2)(a^2+b^2-1)^2-4a^2b^2(3)按下列规则扩充新数:已知两数a、b,可按规则c=ab+a+b扩充一个新数,在a、b、c三数中...
(1)5x^2+7x-6
(2)(a^2+b^2-1)^2-4a^2b^2
(3)按下列规则扩充新数:已知两数a、b,可按规则c=ab+a+b扩充一个新数,在a、b、c三数中任取两个,按规则又可扩充一个新数……每扩充一个新数叫做一次操作。现有1和4,
①求按上述规则操作三次得到扩充的最大新数;
②能否通过上述规则扩充得到新数1999,并说明理由。
请详细解答,谢谢啦! 展开
(2)(a^2+b^2-1)^2-4a^2b^2
(3)按下列规则扩充新数:已知两数a、b,可按规则c=ab+a+b扩充一个新数,在a、b、c三数中任取两个,按规则又可扩充一个新数……每扩充一个新数叫做一次操作。现有1和4,
①求按上述规则操作三次得到扩充的最大新数;
②能否通过上述规则扩充得到新数1999,并说明理由。
请详细解答,谢谢啦! 展开
展开全部
(1)原式=(x+2)(5x-3)
(2)原式=(a²+b²-1+2ab)(a²+b²-1-2ab)
=[(a+b)²-1][(a-b)²-1]
=(a+b+1)(a+b-1)(a-b+1)(a-b-1)
(3)①1×4+1+4=9
4×9+4+9=49
9×49+9+49=499
②设能,则ab+a+b=1999
ab+a+b+1=2000
(a+1)(b+1)=2000
令a=1,则b=999
令mn+m+n=999
(m+1)(n+1)=1000
令m=1,则n=499
∴能
(2)原式=(a²+b²-1+2ab)(a²+b²-1-2ab)
=[(a+b)²-1][(a-b)²-1]
=(a+b+1)(a+b-1)(a-b+1)(a-b-1)
(3)①1×4+1+4=9
4×9+4+9=49
9×49+9+49=499
②设能,则ab+a+b=1999
ab+a+b+1=2000
(a+1)(b+1)=2000
令a=1,则b=999
令mn+m+n=999
(m+1)(n+1)=1000
令m=1,则n=499
∴能
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询