几道初中数学题。求答案
将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为:已知矩形的一边AB=5,另一边AD=3,则以直线...
将一个棱长为8、各个面上均涂有颜色的正方体,锯成64个同样大小的小正方体,其中所有恰有2面涂有颜色的小正方体表面积之和为:
已知矩形的一边AB=5,另一边AD=3,则以直线AB为轴旋转一周所得到的圆柱表面积: 展开
已知矩形的一边AB=5,另一边AD=3,则以直线AB为轴旋转一周所得到的圆柱表面积: 展开
3个回答
2010-10-23
展开全部
问题一:首先要弄清这64个小正方体中,3面涂有颜色就是每个角上的正方体,有8个。1面涂有颜色的有32(24+4+4)个。所以2面涂有颜色的小正方体就只有24个了。而每个小正方体的表面积是24,而这24个小正方体的表面积之和为576.所以其中所有恰有2面涂有颜色的小正方体表面积之和为576(平方单位) 。 问题二:这里首先要弄清这个圆柱体是以AB为轴旋转的,所以圆柱体的高度就是AB=5,圆柱体的底面半径就是AD=3,这样圆柱体的表面积就不难计算了,即侧面积+2个底面积,而侧面积=30兀,每个底面积=9兀,所以它的表面积=30兀+9兀+9兀=48兀(面积单位)。
展开全部
第一题是24个,表面积是576,下一个我来看看啊
以AB为轴,那么所成圆柱的高为5,半径为3,表面积为2π*3(5+3)=48π
以AB为轴,那么所成圆柱的高为5,半径为3,表面积为2π*3(5+3)=48π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一题:
64个小正方体中,24个是1面涂有颜色的,8个角上的是3面涂有颜色的,所以2面涂有颜色的小正方体是:64-24-8=32个,表面积为:2*2*2*8*32=2048
第二题:
就是半径为3高为5的圆柱,表面积就是圆的周长乘以高,2*兀*3*5=30兀
64个小正方体中,24个是1面涂有颜色的,8个角上的是3面涂有颜色的,所以2面涂有颜色的小正方体是:64-24-8=32个,表面积为:2*2*2*8*32=2048
第二题:
就是半径为3高为5的圆柱,表面积就是圆的周长乘以高,2*兀*3*5=30兀
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询