四分位数的示例

 我来答
习惯有你陪me
2018-04-04 · TA获得超过1.3万个赞
知道小有建树答主
回答量:79
采纳率:100%
帮助的人:1.5万
展开全部

首先确定四分位数的位置:

Q1的位置= (n+1) × 0.25

Q2的位置= (n+1) × 0.5

Q3的位置= (n+1) × 0.75

n表示项数

对于四分位数的确定,有不同的方法,另外一种方法基于N-1 基础。

Q1的位置=(n-1)x 0.25

Q2的位置=(n-1)x 0.5

Q3的位置=(n-1)x 0.75

Excel 中有两个四分位数的函数。

QUATILE.EXC 基于 N+1 的方法,QUARTILE.INC基于N-1的方法。

hcy电子数码
高能答主

2021-06-19 · 致力于成为全知道最会答题的人
知道大有可为答主
回答量:1.1万
采纳率:100%
帮助的人:172万
展开全部

首先确定四分位数的位置:

Q1的位置= (n+1) × 0.25

Q2的位置= (n+1) × 0.5

Q3的位置= (n+1) × 0.75

n表示项数

对于四分位数的确定,有不同的方法,另外一种方法基于N-1 基础。即

Q1的位置=(n-1)x 0.25

Q2的位置=(n-1)x 0.5

Q3的位置=(n-1)x 0.75

Excel 中有两个四分位数的函数。QUARTILE.EXC 和QUARTILE.INC

QUATILE.EXC 基于 N+1 的方法,QUARTILE.INC基于N-1的方法。

实例1

数据总量: 6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36

由小到大排列的结果: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49

一共11项

Q1 的位置=(11+1) × 0.25=3, Q2 的位置=(11+1)× 0.5=6, Q3的位置=(11+1) × 0.75=9

Q1 = 15,

Q2 = 40,

Q3 = 43

实例2

数据总量: 7, 15, 36, 39, 40, 41

一共6项

Q1 的位置=(6+1)× 0.25=1.75, Q2 的位置=(6+1) × 0.5=3.5, Q3的位置=(6+1) × 0.75=5.25

Q1 = 7+(15-7)×(1.75-1)= 13,

Q2 = 36+(39-36)×(3.5-3)= 37.5,

Q3 = 40+(41-40)×(5.25-5)= 40.25

1、将数据从小到大排序,计为数组a(1 to n),n代表数据的长度

2、确定四分位数的位置:b= 1+(n-1) × 0.25= 2.25,b的整数部分计为c b的小数部分计为d

计算Q1:Q1=a(c)+[a(c+1)-a(c)]*d=a(1)+[a(2)-a(1)] *0.25 =15+(36-15)×(2.25-2)=20.25

3、计算如上 Q2与Q3的求法类似,四分位差=Q3-Q1

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
冷镶桃rh
2016-05-12 · 超过55用户采纳过TA的回答
知道答主
回答量:176
采纳率:0%
帮助的人:45.5万
展开全部

首先确定四分位数的位置:
Q1的位置= (n+1) × 0.25
Q2的位置= (n+1) × 0.5
Q3的位置= (n+1) × 0.75
n表示项数
对于四分位数的确定,有不同的方法,另外一种方法基于N-1 基础。即
Q1的位置=1+(n-1)x 0.25
Q2的位置=1+(n-1)x 0.5
Q3的位置=1+(n-1)x 0.75
Excel 中有两个四分位数的函数。QUARTILE.EXC 和QUARTILE.INC
QUARTILE.EXC 基于 N+1 的方法,QUARTILE.INC基于N-1的方法。
引证:1.minitab软件自带“公式与方法”(methods and formulas) 内,关于第一四分位数的原文如下:
1st quartile (Q1)
Twenty-five percent of your sample observations are less than or equal to the value of the first quartile. Therefore, the first quartile is also referred to as the 25th percentile. Q1 is calculated as follows:
let
w = (N+1)/4
y = the truncated integer value of w
z = the fraction component of w that was truncated away
Q1 = x(y) + z(x(y+1) - x(y))
Note: when w is an integer, y = w, z = 0, and Q1 = x(y)
关于第三四分位数的原文如下:
3rd quartile (Q3)
Seventy-five percent of your sample observations are less than or equal to the value of the third quartile. Therefore, the third quartile is also referred to as the 75th percentile. Q3 is calculated as follows:
let
w = 3(N+1)/4
y = the truncated integer value of w
z = the fraction component of w that was truncated away
Q3 = x(y) + z(x(y+1) - x(y))
Note: when w is an integer, y = w, z = 0, and Q3 = x(y)
以上引文中,w代表分位数位置,y代表位置的整数部分,z代表位置的分数部分。
2. 论四分位数的计算 (湖南工学院工商管理系 祁德军 南华大学数理学院 陈明)

(原文截图)
实例1
数据总量: 6, 47, 49, 15, 42, 41, 7, 39, 43, 40, 36
由小到大排列的结果: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49
一共11项
Q1 的位置=(11+1) × 0.25=3, Q2 的位置=(11+1)× 0.5=6, Q3的位置=(11+1) × 0.75=9
Q1 = 15,
Q2 = 40,
Q3 = 43
实例2
数据总量: 7, 15, 36, 39, 40, 41
一共6项
数列项为偶数项时,四分位数Q2为该组数列的中数,Q1为前半组(6项即为前3个数)的中数,Q3为后半组数字的中数,此时
Q1 = 25.5, (Q1为前半组数据的中位数,应该为15 For 尉向东)
Q2 = (36+39)/2= 37.5,
Q3 = 40.5. (Q3为前半组数据的中位数,应该为40 For 尉向东)
1、将数据从小到大排序,计为数组a(1 to n),n代表数据的长度
2、确定四分位数的位置:b= 1+(n-1) × 0.25= 2.25,b的整数部分计为c b的小数部分计为d
计算Q1:Q1=a(c)+[a(c+1)-a(c)]*d=a(1)+[a(2)-a(1)] *0.25 =15+(36-15)×(2.25-2)=20.25
3、计算如上 Q2与Q3的求法类似,四分位差=Q3-Q1

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秒懂百科
2020-12-23 · TA获得超过5.9万个赞
知道大有可为答主
回答量:25.3万
采纳率:88%
帮助的人:1.2亿
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hehaheha126
2018-01-29
知道答主
回答量:1
采纳率:0%
帮助的人:905
展开全部
m
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式