1/(1*2*3)+1/(2*3*4)+1/(3*4*5)+..........+1/(9*10*11)=?
展开全部
1/(k-1)k(k+1)
=1/k(k^2-1)
=k/(k^2-1)-1/k
=1/2(k-1)+1/2(k+1)-1/k
=[1/(k-1)+1/(k+1)]/2-1/k
就按这种思路把每项分解开再求和。
原式==[1/1+1/3]/2-1/2
+[1/2+1/4]/2-1/3
+[1/3+1/5]/2-1/4
+[1/4+1/6]/2-1/5
...
+[1/9+1/11]/2-1/10
上式各项同乘以2,整体再除以2,其值不变。
∴原式
={[1/1+1/3]-2/2
+[1/2+1/4]-2/3
+[1/3+1/5]-2/4
+[1/4+1/6]-2/5
...
+[1/9+1/11]-2/10}/2
={1/2-1/10+1/11}/2
= 27/110
=1/k(k^2-1)
=k/(k^2-1)-1/k
=1/2(k-1)+1/2(k+1)-1/k
=[1/(k-1)+1/(k+1)]/2-1/k
就按这种思路把每项分解开再求和。
原式==[1/1+1/3]/2-1/2
+[1/2+1/4]/2-1/3
+[1/3+1/5]/2-1/4
+[1/4+1/6]/2-1/5
...
+[1/9+1/11]/2-1/10
上式各项同乘以2,整体再除以2,其值不变。
∴原式
={[1/1+1/3]-2/2
+[1/2+1/4]-2/3
+[1/3+1/5]-2/4
+[1/4+1/6]-2/5
...
+[1/9+1/11]-2/10}/2
={1/2-1/10+1/11}/2
= 27/110
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询