面面垂直的性质定理

 我来答
潭珠U7
2016-05-17 · TA获得超过107个赞
知道答主
回答量:190
采纳率:0%
帮助的人:68.7万
展开全部

如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
已知:α⊥β,α∩β=l,O∈l,OP⊥l,OP⊂α。  
求证:OP⊥β。
证明:过O在β内作OQ⊥l,则由二面角知识可知∠POQ是二面角α-l-β的平面角。
∵α⊥β
∴∠POQ=90°,即OP⊥OQ
∵OP⊥l,l∩OQ=O,l⊂β,OQ⊂β
∴OP⊥β 如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
已知α⊥β,A∈α,AB⊥β。求证:AB⊂α  
证明:假设AB不在α内,则AB与α只有一个交点A。(因为不可能直线的一部分在平面内而另一部分在平面外,即直线的两点在面上则直线就在面上)
当A在α和β的交线外时,则B是垂足
∵AB⊥β于B
∴B∈β
设α∩β=MN,过B在β内作BC⊥MN,由定理1可知BC⊥α
连接AC
∵AC⊂α
∴AC⊥BC
但AB⊥β,BC⊂β
∴AB⊥BC
即在平面ABC上,过一点A有AB、AC同时垂直BC,与垂直定理矛盾。
当A在α和β的交线上时,A是垂足。
设α∩β=MN,在α内作AC⊥MN,由定理1可知AC⊥β
但AB⊥β,即过A有两条直线AB、AC与β垂直,这和线面垂直的性质定理矛盾
∴假设不成立,AB⊂α 如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
已知:α⊥γ,β⊥γ,α∩β=l。求证:l⊥γ
证明:设α∩γ=a,β∩γ=b
∵a∩b=l
∴a与b相交
设a∩b=P,则P∈l
若l与γ不垂直,那么在α内过P作PA⊥a,由定理1可知PA⊥γ
同理,在β内作PB⊥b,就有PB⊥γ
于是过P有两条直线与γ垂直,与线面垂直的性质定理矛盾。
∴假设不成立,l⊥γ 三个两两垂直的平面的交线两两垂直。
已知:α⊥β,β⊥γ,γ⊥α,且α∩β=a,β∩γ=b,γ∩α=c
求证:a⊥b,a⊥c,b⊥c
证明:∵α∩β=a,α⊥γ,β⊥γ
∴a⊥γ(定理3)
∵b⊂γ,c⊂γ
∴a⊥b,a⊥c
同理可证b⊥c 如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。(判定定理推论1的逆定理)
已知α⊥β,a⊥β,a∉α。求证a∥α
证明:假设a与α不平行,那么他们相交。设交点是A
又设a⊥β,垂足为B。α∩β=l
在α内作AC⊥l,由定理1可知AC⊥β
则过点A有AB、AC与β垂直,与线面垂直的性质定理矛盾
∴a∥α 如果两个平面互相垂直,那么分别垂直于这两个平面的两条垂线也互相垂直。(判定定理推论2的逆定理)
可以根据定理4先证明一个平面的垂线平行于另一个平面,再根据线面平行的性质证明这条直线与另一个平面的垂线垂直。

上海华然企业咨询
2024-10-30 广告
在上海华然企业咨询有限公司,我们深刻理解大模型测试对于确保数据准确性、提升业务效率及优化用户体验的重要性。我们的测试团队专注于对大模型进行全面而细致的评估,涵盖性能稳定性、预测准确性、响应速度及兼容性等多个维度。通过模拟真实业务场景,我们力... 点击进入详情页
本回答由上海华然企业咨询提供
帐号已注销
2018-03-30 · TA获得超过1.8万个赞
知道小有建树答主
回答量:20
采纳率:0%
帮助的人:7万
展开全部
  1. 如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。

  2. 如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。

  3. 如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。

  4. 如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。

面面垂直定义:若两个平面的二面角为直二面角(平面角是直角的二面角),则这两个平面互相垂直。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
洋葱学园
2022-07-18 · 原洋葱数学。好课上洋葱,学习更主动
洋葱学园
向TA提问
展开全部
1.如果两个平面相互垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
2.如果两个平面相互垂直,那么经过第一个平面内的一点作垂直于第二个平面的直线在第一个平面内。
3.如果两个相交平面都垂直于第三个平面,那么它们的交线垂直于第三个平面。
4.如果两个平面互相垂直,那么一个平面的垂线与另一个平面平行。
直线与平面垂直的判定定理(线面垂直定理):一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
推论1:如果在两条平行直线中,有一条直线垂直于一个平面,那么另一条直线也垂直于这个平面。
推论2:如果两条直线垂直于同一个平面,那么这两条直线平行。


"/>
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
韩吉君bo
高粉答主

2020-02-13 · 每个回答都超有意思的
知道答主
回答量:15.3万
采纳率:9%
帮助的人:9442万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式