E是正方形ABCD的边AD的中点,F是DC上的点,且DF=四分之一CD,试说明EF⊥BE

hjc142857
2010-10-23 · TA获得超过1214个赞
知道小有建树答主
回答量:229
采纳率:0%
帮助的人:197万
展开全部

设边长为a。

∵AE=1/2AD

∴AE=1/2a

∴AE:a=1:2

∵DF=1/4CD(1/4a)

∴DF=1/2AE

∴DF:AE=1:2

∵△ABE各边之比与△EDF相同

∴△ABE与△EDF互为相似三角形

∴角ABE=角DEF

  角AEB=角DFE

∴角BEF=180度-角DEF-角AEB 

       =90度

∴EF⊥BE

wll_cumt
2010-10-23 · TA获得超过282个赞
知道答主
回答量:19
采纳率:0%
帮助的人:0
展开全部
解:设正方形边长为1,则AE=1/2,DF=1/4
在RT角形ABE中,AB=1,AE=1/2,由勾股定理可知BE=根号下5/4。
同理,在RT角形EDF中,ED=1/2,DF=1/4,由勾股定理可知EF=根号下5/16; 在RT角形BCF中,BC=1,CF=3/4,由勾股定理可知BF=根号下25/16。
综上,在三角形BEF中,BE=根号下5/4,EF=根号下5/16,BF=根号下25/16,即BE平方+EF平方=BF平方,根据勾股定理可知EF⊥BE。
注:解题的关键在于反复应用勾股定理。

分数拿来吧...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友f00f034
2010-10-23 · TA获得超过634个赞
知道答主
回答量:94
采纳率:100%
帮助的人:64.8万
展开全部
证明:(一下2为平方的意思)
在直角三角形中,两条直角边a、b的平方和等于斜边c的平方,即a2+b2=c2.(勾股定理)
由题意知:在△EDF中DF2+DE2=EF2
同理在△BFC中FC2+CB2=FB2
△AEB中 AE2+AB2=BE2
设DF=1
因为E是正方形ABCD的边AD的中点,F是DC上的点,且DF=四分之一CD

所以 DE=2 FC=3 CB=4 AE=2 AB=4
得出 EB2=20 EF2=5 BF2=25

因为EF2+FB2=BF2
由.(勾股定理逆定理)得出.△BEF为直角三角形 且EF⊥BE
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zcy1018495077
2012-10-25
知道答主
回答量:3
采纳率:0%
帮助的人:4655
展开全部
∵AE=1/2AD
∴AE=1/2a
∴AE:AD=1:2
∵DF=1/4CD
∴DF=1/2AE
∴DF:AE=1:2
∵△ABE各边之比与△EDF相同
∴△ABE与△EDF互为相似三角形
∴角ABE=角DEF
角AEB=角DFE
∴角BEF=180度-角DEF-角AEB
=90度
∴EF⊥BE
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式