定积分,谢谢 30
1个回答
展开全部
(1)
∫[-1:1][x/(1+x²)²]dx
=½∫[-1:1][1/(1+x²)²]d(1+x²)
=-1/(1+x²)|[-1:1]
=-1/(1+1²)+ 1/[1+(-1)²]
=0
(2)
∫[0:1]x√(x²+1)dx
=½∫[0:1]√(x²+1)d(x²+1)
=(2/3)(x²+1)^(3/2)|[0:1]
=(2/3)[(1²+1)^(3/2) -(0²+1)^(3/2)]
=(2/3)(2√2-1)
=(4√2-2)/3
(3)
令√x=u,则x=u²
x:0→1,则u:0→1
∫[0:1]dx/[√x(1+x)]
=∫[0:1]d(u²)/[u(1+u²)]
=∫[0:1]2u/[u(1+u²)] du
=2∫[0:1][1/(1+u²)]du
=2arctanu|[0:1]
=2(arctan1 -arctan0)
=2(π/4 -0)
=π/2
(4)
∫[-1:1] [x/√(5-4x)]dx
=¼∫[-1:1] [(4x-5+5)/√(5-4x)]dx
=-¼∫[-1:1]√(5-4x)dx +(5/4)∫[-1:1][1/√(5-4x)]dx
=(1/16)∫[-1:1]√(5-4x)d(5-4x) -(5/16)∫[-1:1][1/√(5-4x)]d(5-4x)
=(1/16)(2/3)(5-4x)^(3/2)|[-1:1] -(5/16)·2·√(5-4x)|[-1:1]
=(1/24)(1+27) -(5/8)(1-3)
=29/12
∫[-1:1][x/(1+x²)²]dx
=½∫[-1:1][1/(1+x²)²]d(1+x²)
=-1/(1+x²)|[-1:1]
=-1/(1+1²)+ 1/[1+(-1)²]
=0
(2)
∫[0:1]x√(x²+1)dx
=½∫[0:1]√(x²+1)d(x²+1)
=(2/3)(x²+1)^(3/2)|[0:1]
=(2/3)[(1²+1)^(3/2) -(0²+1)^(3/2)]
=(2/3)(2√2-1)
=(4√2-2)/3
(3)
令√x=u,则x=u²
x:0→1,则u:0→1
∫[0:1]dx/[√x(1+x)]
=∫[0:1]d(u²)/[u(1+u²)]
=∫[0:1]2u/[u(1+u²)] du
=2∫[0:1][1/(1+u²)]du
=2arctanu|[0:1]
=2(arctan1 -arctan0)
=2(π/4 -0)
=π/2
(4)
∫[-1:1] [x/√(5-4x)]dx
=¼∫[-1:1] [(4x-5+5)/√(5-4x)]dx
=-¼∫[-1:1]√(5-4x)dx +(5/4)∫[-1:1][1/√(5-4x)]dx
=(1/16)∫[-1:1]√(5-4x)d(5-4x) -(5/16)∫[-1:1][1/√(5-4x)]d(5-4x)
=(1/16)(2/3)(5-4x)^(3/2)|[-1:1] -(5/16)·2·√(5-4x)|[-1:1]
=(1/24)(1+27) -(5/8)(1-3)
=29/12
追问
看不懂
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询