第(10)问的极限怎么求?求解题过程 10
1个回答
展开全部
lim(x->1) ( x^(1/3) -1)/(x^(1/2) -1)
=lim(x->1) ( x^(1/6) -1) ( x^(1/6) + 1)/[ (x^(1/6) -1).(x^(1/3) + x^(1/6) +1) ]
=lim(x->1) ( x^(1/6) + 1)/ (x^(1/3) + x^(1/6) +1)
= ( 1+1)/(1+1+1)
=2/3
=lim(x->1) ( x^(1/6) -1) ( x^(1/6) + 1)/[ (x^(1/6) -1).(x^(1/3) + x^(1/6) +1) ]
=lim(x->1) ( x^(1/6) + 1)/ (x^(1/3) + x^(1/6) +1)
= ( 1+1)/(1+1+1)
=2/3
追问
看不太懂
追答
x^(1/3) -1 = (x^(1/6))^2 - 1^2 =( x^(1/6) -1) ( x^(1/6) + 1)
x^(1/2) -1 = (x^(1/6))^3 -1^3 =(x^(1/6) -1).(x^(1/3) + x^(1/6) +1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询