急!求解下面积分题6.6
2个回答
展开全部
6.6
令√[(4-x)/(x-12)]=t,则x=(12t²+4)/(t²+1)
∫√[(4-x)/(x-12)]dx
=∫td[(12t²+4)/(t²+1)]
=(12t²+4)t/(t²+1) -∫[(12t²+4)/(t²+1)]dt
=(12t²+12-8)t/(t²+1) -∫[12 -8/(t²+1)]dt
=12t -8t/(t²+1) -12t +8arctant +C
=8arctan[√[(4-x)/(x-12)] -8√[(4-x)/(x-12)]/[(4-x)/(x-12) +1] +C
=8arctan[√[(4-x)/(x-12)] +√[(4-x)(x-12)] +C
令√[(4-x)/(x-12)]=t,则x=(12t²+4)/(t²+1)
∫√[(4-x)/(x-12)]dx
=∫td[(12t²+4)/(t²+1)]
=(12t²+4)t/(t²+1) -∫[(12t²+4)/(t²+1)]dt
=(12t²+12-8)t/(t²+1) -∫[12 -8/(t²+1)]dt
=12t -8t/(t²+1) -12t +8arctant +C
=8arctan[√[(4-x)/(x-12)] -8√[(4-x)/(x-12)]/[(4-x)/(x-12) +1] +C
=8arctan[√[(4-x)/(x-12)] +√[(4-x)(x-12)] +C
展开全部
设t=√[(4-x)/(x-12)]
则4-x=t²(x-12)
∴x=(12t²+4)/(t²+1)=12-8/(t²+1)
∴原式=∫t·d[12-8/(t²+1)]
=-∫t·d[8/(t²+1)]
=-8t/(t²+1)+∫8/(t²+1)·dt
=-8t/(t²+1)+8arctant+C
=√[(4-x)(x-12)]+8arctan√[(4-x)/(x-12)]+C
则4-x=t²(x-12)
∴x=(12t²+4)/(t²+1)=12-8/(t²+1)
∴原式=∫t·d[12-8/(t²+1)]
=-∫t·d[8/(t²+1)]
=-8t/(t²+1)+∫8/(t²+1)·dt
=-8t/(t²+1)+8arctant+C
=√[(4-x)(x-12)]+8arctan√[(4-x)/(x-12)]+C
追答
最后一步应该有一个负号,
打掉了。
答案是
-√[(4-x)(x-12)]+8arctan√[(4-x)/(x-12)]+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询