怎么快速判断幂级数的收敛和发散

 我来答
是你找到了我
高粉答主

2019-08-02 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:43.2万
展开全部

利用阿贝尔定理:

1、如果幂级数在点x0处(x0不等于0)收敛,则对于适合不等式|x|<|x0|的一切x使这幂级数绝对收敛。

2、反之,如果幂级数在点x1处发散,则对于适合不等式|x|>|x1|的一切x使这幂级数发散。

如果幂级数不是仅在x0一点收敛,也不是在整个数轴上都收敛,那么必有一个确定的正数R存在,使得

(1)当|x|小于R时,幂级数绝对收敛;

(3)当|x|大于R时,幂级数发散;

(3)当|x|等于R时,幂级数可能收敛也可能发散。

扩展资料:

幂级数的和函数的性质:

性质一:幂级数的和函数s(x)在其收敛域I上连续。

性质二:幂级数的和函数s(x)在其收敛域I上可积,并有逐项积分公式

逐项积分后所得的幂级数和原级数有相同的收敛半径

帐号已注销
2017-01-06 · TA获得超过4689个赞
知道小有建树答主
回答量:739
采纳率:100%
帮助的人:277万
展开全部
幂级数Σa_n*x^n(n从0到+∞)在收敛半径之内绝对收敛,在收敛半径之外发散。在收敛区间端点上有可能条件收敛、绝对收敛或者发散。
所以面对一个幂级数应该首先求出它的收敛半径,然后判断收敛区间端点上的敛散性。
而因为区间端点对应确定的x值,此时的幂级数就变成了一个数项级数,因此按照数项级数的审敛准则来判断敛散性,例如p-级数、交错级数等。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式