幂函数的基本运算有哪些
1、同底数幂的乘法:
2、幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n。
3、同底数幂的除法:
(1)同底数幂的除法:am÷an=a(m-n) (a≠0, m, n均为正整数,并且m>n)。
(2)零指数:a0=1 (a≠0)。
(3)负整数指数幂:a-p= (a≠0, p是正整数)①当a=0时没有意义,0-2, 0-3都无意义。
法则口诀:
同底数幂的乘法:底数不变,指数相加幂的乘方;
同底数幂的除法:底数不变,指数相减幂的乘方;
幂的指数乘方:等于各因数分别乘方的积商的乘方
扩展资料
计算:x5·xn-3·x4-3x2·xn·x4
解:x^5·x^n-3·x^4-3x^2·x^n·x^4
分析:
①先做乘法再做减法
=x(5+n-3+4)-3x(2+n+4 )
②运算结果指数能合并的要合并
=x(6+n)-3x(6+n)
③3x2即为3·(x2)
=(1-3)x6+n ④x 6+n,与-3x6+n是同类项,
=-2x 6+n合并时将系数进行运算(1-3)=-2。
1、幂的乘方(a^m)^n=a^(mn),与积的乘方(ab)^n=a^nb^n。
2、同底数幂的除法:
(1)同底数幂的除法:am÷an=a(m-n) (a≠0, m, n均为正整数,并且m>n)。
(2)零指数:a0=1 (a≠0)。
(3)负整数指数幂:a-p= (a≠0, p是正整数)①当a=0时没有意义,0-2, 0-3都无意义。
一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
扩展资料
性质
正值性质
当α>0时,幂函数y=xα有下列性质:
a、图像都经过点(1,1)(0,0);
b、函数的图像在区间[0,+∞)上是增函数;
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0;
负值性质
当α<0时,幂函数y=xα有下列性质:
a、图像都通过点(1,1);
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
(1)a^r•a^s=a^(r+s)(a>0);
(2)(a^r)^s=a^(r •s)(a>0);
(3)(ab)^r=a^r• b^r (a>0,b>0).
有理指数幂的运算性质同样适用于无理指数幂.于是上面的运算性质对于任意实数r,s成立.