根号下x2+1的不定积分是多少
根号下x2+1的不定积分是(1/2)[x√(x+1)+ln|x+√(x+1)|]+C。
∫√(x²+1) dx
=x√(x²+1)-∫xd[√(x²+1)]
=x√(x²+1)-∫[x²/√(x²+1)]dx
=x√(x²+1)-∫[(x²+1)/√(x²+1)]dx+∫[1/√(x²+1)]dx
=x√(x²+1)-I+∫[1/√(x²+1)]dx
=(1/2){x√(x²+1)+∫[1/√(x²+1)]dx}
设x=tant,则√(x²+1)=sect,dx=sec²tdt
∫[1/√(x²+1)]dx
=∫sec²t/sect dt
=∫sect dt
=ln|tant+sect|+C
=ln|x+√(x²+1)|+C
=(1/2){x√(x²+1)+∫[1/√(x²+1)]dx}
=(1/2)[x√(x²+1)+ln|x+√(x²+1)|]+C
所以根号下x2+1的不定积分是(1/2)[x√(x+1)+ln|x+√(x+1)|]+C。
分部积分法
设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu [1]
两边积分,得分部积分公式
∫udv=uv-∫vdu。 ⑴
称公式⑴为分部积分公式.如果积分∫vdu易于求出,则左端积分式随之得到.
分部积分公式运用成败的关键是恰当地选择u,v
一般来说,u,v 选取的原则是:
1、积分容易者选为v,
2、求导简单者选为u。
例子:∫Inx dx中应设U=Inx,V=x
分部积分法的实质是:将所求积分化为两个积分之差,积分容易者先积分。实际上是两次积分。
有理函数分为整式(即多项式)和分式(即两个多项式的商),分式分为真分式和假分式,而假分式经过多项式除法可以转化成一个整式和一个真分式的和.可见问题转化为计算真分式的积分.
可以证明,任何真分式总能分解为部分分式之和。
根号下x2+1的不定积分是(1/2)[x√(x+1)+ln|x+√(x+1)|]+C。
∫√(x²+1) dx
=x√(x²+1)-∫xd[√(x²+1)]
=x√(x²+1)-∫[x²/√(x²+1)]dx
=x√(x²+1)-∫[(x²+1)/√(x²+1)]dx+∫[1/√(x²+1)]dx
=x√(x²+1)-I+∫[1/√(x²+1)]dx
=(1/2){x√(x²+1)+∫[1/√(x²+1)]dx}
设x=tant,则√(x²+1)=sect,dx=sec²tdt
∫[1/√(x²+1)]dx
=∫sec²t/sect dt
=∫sect dt
=ln|tant+sect|+C
=ln|x+√(x²+1)|+C
=(1/2){x√(x²+1)+∫[1/√(x²+1)]dx}
=(1/2)[x√(x²+1)+ln|x+√(x²+1)|]+C
所以根号下x2+1的不定积分是(1/2)[x√(x+1)+ln|x+√(x+1)|]+C。
扩展资料:
分部积分法两个原则
1、相对来说,谁易凑到微分后面,就凑谁;
2、交换位置之后的积分容易求出。
经验顺序:对,反,幂,三,指
谁在后面就把谁凑到微分的后面去,比如,如果被积函数有指数函数,就优先把指数凑到微分的后面去,如果没有就考虑把三角函数凑到后面去,在考虑幂函数。
当然,对数函数和反三角函数,这两个函数比较难惹,你千万不要动它。需要注意的是经验顺序不是绝对的,而是一个笼统的顺序,掌握两大原则更重要。