1个回答
展开全部
∵AB‖CD,
∴〈ABC+〈DCB=180度,
∴(〈ABC+〈DCB)/2=90度,
BE和CE分别是〈ABC和〈BCD平分线,
∴〈EBC+〈ECB=90度,
三角形EBC是直角三角形,
根据勾股定理,
BC=13,
AD//BC,
〈DEC=〈ECB,(内错角相等)
〈ECD=〈ECB,(已知)
∴〈DEC=〈ECD,
DE=CD,
同理AB=AE,
AB+CD=AE+DE=AD=BC=13,
∴平行四边形ABCD周长=BC+AD+AB+CD=13+13+13=39。
作EH⊥BC,垂足H,
S△BEC=BE*EC/2=12*5/2=30,
S△BEC=BC*EH/2=13*EH/2,
13EH/2=30,
EH=60/13,
∴S平行四边形ABCD=BC*EH=13*60/13=60。
∴〈ABC+〈DCB=180度,
∴(〈ABC+〈DCB)/2=90度,
BE和CE分别是〈ABC和〈BCD平分线,
∴〈EBC+〈ECB=90度,
三角形EBC是直角三角形,
根据勾股定理,
BC=13,
AD//BC,
〈DEC=〈ECB,(内错角相等)
〈ECD=〈ECB,(已知)
∴〈DEC=〈ECD,
DE=CD,
同理AB=AE,
AB+CD=AE+DE=AD=BC=13,
∴平行四边形ABCD周长=BC+AD+AB+CD=13+13+13=39。
作EH⊥BC,垂足H,
S△BEC=BE*EC/2=12*5/2=30,
S△BEC=BC*EH/2=13*EH/2,
13EH/2=30,
EH=60/13,
∴S平行四边形ABCD=BC*EH=13*60/13=60。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询