求解题过程!! 20
1个回答
展开全部
当m>2/3时,函数g(x)无零点;
当m=2/3时,函数g(x)有且只有一个零点;
当0<m<2/3时,函数g(x)有两个零点;
当m≤0时,函数g(x)有且只有一个零点;
综上:
当m>2/3时,函数g(x)无零点;
当m=2/3或m≤0时,函数g(x)有且只有一个零点;
当0<m<2/3时,函数g(x)有两个零点;
(3解析:∵对任意b>a>0,[f(b)-f(a)]/(b-a)<1恒成立,
等价于f(b)-b<f(a)-a恒成立;
设h(x)=f(x)-x=lnx+m/x-x(x>0),
∴h(x)在(0,+∞)上单调递减;
∵h′(x)=1/x-m/x^2-1≤0在(0,+∞)上恒成立,
∴m≥-x^2+x=-(x-1/2)^2+1/4(x>0),
∴m≥1/4;
对于m=1/4,h′(x)=0仅在x=1/2时成立;
∴m的取值范围是[1/4,+∞).
当m=2/3时,函数g(x)有且只有一个零点;
当0<m<2/3时,函数g(x)有两个零点;
当m≤0时,函数g(x)有且只有一个零点;
综上:
当m>2/3时,函数g(x)无零点;
当m=2/3或m≤0时,函数g(x)有且只有一个零点;
当0<m<2/3时,函数g(x)有两个零点;
(3解析:∵对任意b>a>0,[f(b)-f(a)]/(b-a)<1恒成立,
等价于f(b)-b<f(a)-a恒成立;
设h(x)=f(x)-x=lnx+m/x-x(x>0),
∴h(x)在(0,+∞)上单调递减;
∵h′(x)=1/x-m/x^2-1≤0在(0,+∞)上恒成立,
∴m≥-x^2+x=-(x-1/2)^2+1/4(x>0),
∴m≥1/4;
对于m=1/4,h′(x)=0仅在x=1/2时成立;
∴m的取值范围是[1/4,+∞).
追问
你不会就不要瞎回答
😡
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询