在三角形ABC中,acosA+bcosB=ccosC,判断形状
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励20(财富值+成长值)
1个回答
2016-12-17
展开全部
∵acosA+bcosB=ccosC,
∴sinAcosA+sinBcosB=sinCcosC,
∴sin2A+sin2B=sin2C,2sin(A+B)cos(A-B)=2sinCcosC,
∴cos(A-B)=-cos(A+B),2cosAcosB=0,
∴cosA=0或cosB=0,得 A=π /2
或 B=π /2
∴△ABC是直角三角形.
∴sinAcosA+sinBcosB=sinCcosC,
∴sin2A+sin2B=sin2C,2sin(A+B)cos(A-B)=2sinCcosC,
∴cos(A-B)=-cos(A+B),2cosAcosB=0,
∴cosA=0或cosB=0,得 A=π /2
或 B=π /2
∴△ABC是直角三角形.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询