已知函数f(x)=x²+1 x≥0或1 x<0求满足不等式f(1-x²)>f(2x)的x的值的范围
f(x)
=x^2+1 ; x≥0
=1 ; x<0
case 1 : x<0
=> 1-x^2 >0 and 2x<0
f(1-x^2)>f(2x)
(1-x^2)^2+1 > 1
(1-x^2)^2 >0
solution for case 1: x<0
-----------------
case 2: 0≤x≤1
=> 1-x^2≥ 0 and 2x≥0
f(1-x^2)>f(2x)
(1-x^2)^2+1 > (2x)^2+1
x^4 - 6x^2 +1 >0
(x^2 - 3)^2 > 8
x^2 - 3 >2√2 or x^2 - 3 < -2√2
x^2 > 3+2√2 or x^2 < 3-2√2
"x< -(√2 +1) or x >√2 +1" or -(√2 -1)<x<√2 -1
x<-(√2 +1) or -(√2 -1)<x<√2 -1 or x >√2 +1
solution for case 2: 0≤x< √2 -1
------------
case 3: x>1
=> 1-x^2< 0 and 2x>0
f(1-x^2)>f(2x)
1> (2x)^2 +1
4x^2 <0
无解
------------
f(1-x^2)>f(2x)
=>
case 1 or case 2 or case 3
x<0 or 0≤x< √2 -1
x< √2 -1