在三角形ABC中,设a+c=2b,A-C=60度,求sinB的值
展开全部
根据正弦定理 a/sinA=b/sinB=c/sinC
得:a=(sinA/sinB)*b c=(sinC/sinB)*b
将其带入已知条件 a+c=2b中
可得sinA+sinC=2sinB
根据三角函数和公式
sinA+sinC
=2sin[(A+C)/2] * cos[(A-C)/2]
∴A+B+C=π
∵sin[(A+C)/2]
=sin[(π-B)/2]
=sin(π/2-B/2)
=cos(B/2)
∴A-C=60°
∵cos[(A-C)/2]=cos30°=(√3)/2
∵sinA+sinC=√3*cos(B/2)=2sinB
根据倍角公式 sinB=2sin(B/2)cos(B/2) √3*cos(B/2)
=4sin(B/2)cos(B/2) sin(B/2)
=(√3)/4 cos(B/2)
=√(1-((√3)/4)^2)
=(√13)/4
sinB=2sin(B/2)cos(B/2)=(√39)/8
得:a=(sinA/sinB)*b c=(sinC/sinB)*b
将其带入已知条件 a+c=2b中
可得sinA+sinC=2sinB
根据三角函数和公式
sinA+sinC
=2sin[(A+C)/2] * cos[(A-C)/2]
∴A+B+C=π
∵sin[(A+C)/2]
=sin[(π-B)/2]
=sin(π/2-B/2)
=cos(B/2)
∴A-C=60°
∵cos[(A-C)/2]=cos30°=(√3)/2
∵sinA+sinC=√3*cos(B/2)=2sinB
根据倍角公式 sinB=2sin(B/2)cos(B/2) √3*cos(B/2)
=4sin(B/2)cos(B/2) sin(B/2)
=(√3)/4 cos(B/2)
=√(1-((√3)/4)^2)
=(√13)/4
sinB=2sin(B/2)cos(B/2)=(√39)/8
展开全部
已知a+c=2b,所以:sinA+sinC=2sinB
==> 2sin[(A+C)/2]cos[(A-C)/2]=2sinB
==> cos(B/2)cos30°=2sin(B/2)cos(B/2)
==> sin(B/2)=√3/4
所以,cos(B/2)=√13/4
所以,sinB=2sin(B/2)cos(B/2)=√39/8
==> 2sin[(A+C)/2]cos[(A-C)/2]=2sinB
==> cos(B/2)cos30°=2sin(B/2)cos(B/2)
==> sin(B/2)=√3/4
所以,cos(B/2)=√13/4
所以,sinB=2sin(B/2)cos(B/2)=√39/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询