根号下(1+x的平方)的导数怎么求
8个回答
展开全部
计算过程如下:
根据题意
设y为导数
y=√(1+x^2)
y'={1/[2√(1+x^2)] } d/dx ( 1+x^2)
={1/[2√(1+x^2)] } (2x)
=x/√(1+x^2)
即原式导数为:x/√(1+x^2)
扩展资料:
如果函数的导函数在某一区间内恒大于零(或恒小于零),那么函数在这一区间内单调递增(或单调递减),这种区间也称为函数的单调区间。
导函数等于零的点称为函数的驻点,在这类点上函数可能会取得极大值或极小值(即极值可疑点)。
进一步判断则需要知道导函数在附近的符号。对于满足的一点,如果存在使得在之前区间上都大于等于零,而在之后区间上都小于等于零,那么是一个极大值点,反之则为极小值点。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这是个复合函数的求导问题:
设Y=1+X^2,则原来的函数就是√Y。
√Y的导数是1/2Y^(-1/2)
1+X^2的导数是2X
原来的函数的导数为1/2Y^(-1/2)·(2X)=1/2(1+X^2)^(-1/2)·(2X)
而后把它整理得:X/(√(1+X^2)
设Y=1+X^2,则原来的函数就是√Y。
√Y的导数是1/2Y^(-1/2)
1+X^2的导数是2X
原来的函数的导数为1/2Y^(-1/2)·(2X)=1/2(1+X^2)^(-1/2)·(2X)
而后把它整理得:X/(√(1+X^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x2-1的1/2次幂 求导之后是1/2*【(x2-1)的-1/2次幂】*【(x2-1)的导数】 第二个中括号的导数就是2*x 把这个代入第二个中括号的位置
结果就是
x*【(x2-1)的-1/2次幂】
结果就是
x*【(x2-1)的-1/2次幂】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询