求定积分∫(0 2)1/√4+x²dx
展开全部
设x=2tant,t=arctan(x/2),x=0~2,t=0~π/4;
dx=2sec²tdt
原积分=
∫(0,π/4)1/2√(1+tan²t).2sec²tdt
=∫(0,π/4)1/2sect.2sec²tdt
=∫(0,π/4)sectdt
在用万能置换公式:设u=tan(t/2),u=0~tan(π/8),t=2arctanu,dt=2/(1+u²).du
sect=(1+u²)/(1-u²)
=∫(0,tan(π/8))(1+u²)/(1-u²).2/(1+u²).du
=∫(0,tan(π/8))2/(1-u²).du
=∫(0,tan(π/8))[1/(1-u)+1/(1+u)]du
=[-ln(1-u)+ln(1+u)](0,tan(π/8))
=ln[(1+u)/(1-u)](0,tan(π/8))
=ln[(1+tan(π/8))/(1-tan(π/8))]
=ln[(1+tan²(π/8)+2tan(π/8))/(1-tan²(π/8))]
=ln[(1+tan²(π/8))/(1-tan²(π/8))+2tan(π/8)/(1-tan²(π/8)]
=ln[sec(π/4)+tan(π/4)]
=ln(√2+1)
dx=2sec²tdt
原积分=
∫(0,π/4)1/2√(1+tan²t).2sec²tdt
=∫(0,π/4)1/2sect.2sec²tdt
=∫(0,π/4)sectdt
在用万能置换公式:设u=tan(t/2),u=0~tan(π/8),t=2arctanu,dt=2/(1+u²).du
sect=(1+u²)/(1-u²)
=∫(0,tan(π/8))(1+u²)/(1-u²).2/(1+u²).du
=∫(0,tan(π/8))2/(1-u²).du
=∫(0,tan(π/8))[1/(1-u)+1/(1+u)]du
=[-ln(1-u)+ln(1+u)](0,tan(π/8))
=ln[(1+u)/(1-u)](0,tan(π/8))
=ln[(1+tan(π/8))/(1-tan(π/8))]
=ln[(1+tan²(π/8)+2tan(π/8))/(1-tan²(π/8))]
=ln[(1+tan²(π/8))/(1-tan²(π/8))+2tan(π/8)/(1-tan²(π/8)]
=ln[sec(π/4)+tan(π/4)]
=ln(√2+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询