常见的等价无穷小有哪些

 我来答
帐号已注销
2021-07-22 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:160万
展开全部

常见的等价无穷小有:sinx~x;tanx~x;arctanx~x;ln(1+x)~x;arcsinx~x;eˣ-1~x;aˣ-1~xlna(a>0,a≠1)。

采用泰勒展开的高阶等价无穷小:

sinx=x-(1/6)x^3+o(x^3)

cosx=1-(x^2)/2!+(x^4)/4!+o(x^4)

tanx=x+(1/3)x^3+o(x^3)

arcsinx=x+(1/6)x^3+o(x^3)

arctanx=x-(1/3)x^3+o(x^3)

In(1+x)=x-(x^2)/2+(x^3)/3+o(x^3)

e^x=1+x+(1/2)x^2+(1/6)x^3+o(x^3)

(1+x)^a=1+ax+a(a-1)(x^2)/2+o(x^2)

求极限时

使用等价无穷小的条件:

被代换的量,在取极限的时候极限值为0;

被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

小溪趣谈电子数码
高粉答主

2020-11-10 · 专注解答各类电子数码疑问
小溪趣谈电子数码
采纳数:2103 获赞数:584697

向TA提问 私信TA
展开全部

常见的等价无穷小有:sinx~x;tanx~x;arctanx~x;ln(1+x)~x;arcsinx~x;eˣ-1~x;aˣ-1~xlna(a>0,a≠1)。

等价无穷小是无穷小之间的一种关系,指的是:在同一自变量的趋向过程中,若两个无穷小之比的极限为1,则称这两个无穷小是等价的。无穷小等价关系刻画的是两个无穷小趋向于零的速度是相等的。

扩展资料:

求极限时,使用等价无穷小的条件:

1、被代换的量,在取极限的时候极限值为0;

2、被代换的量,作为被乘或者被除的元素时可以用等价无穷小代换,但是作为加减的元素时就不可以。

等价无穷小替换是计算未定型极限的常用方法,它可以使求极限问题化繁为简,化难为易。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小小的数老师

2021-10-07 · 小小的数认真解答,专注教育
小小的数老师
采纳数:73 获赞数:1599

向TA提问 私信TA
展开全部

常见的等价无穷小

整个式子中的乘、除因子可以用等价无穷小替换,加、减时不能用等价无穷小替换,部分式子中的乘、除因子也不能用等价无穷小替换。


当x→0的等价无穷小量

例:

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
生活通周老实
2023-07-15 · 超过290用户采纳过TA的回答
知道小有建树答主
回答量:1325
采纳率:100%
帮助的人:17.2万
展开全部
在微积分中,等价无穷小是指在某一极限下与给定无穷小具有相同极限的无穷小。以下是一些常见的等价无穷小:

1. 当 x 趋于零时:
- x 和 sin(x)
- x 和 tan(x)
- x 和 arcsin(x)
- x 和 arctan(x)
- x 和 ln(1+x)
- x 和 e^x - 1

2. 当 x 趋于正无穷时:
- x 和 x^2
- x 和 x^n(其中 n 是任意正实数)
- x 和 e^x
- x 和 ln(x)
- x 和 (a^x - 1)(其中 a 是大于 1 的实数)

需要注意的是,等价无穷小并不是唯一的,上述列举的只是一些常见的例子。具体的等价无穷小取决于问题的具体情况和使用的极限定义。在处理极限时,根据问题的特点和需要,可能会使用不同的等价无穷小来简化计算或推导过程。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
易用店铺

2023-07-14 · TA获得超过2390个赞
知道小有建树答主
回答量:2932
采纳率:99%
帮助的人:84.9万
展开全部
在微积分中,等价无穷小是指在某一极限过程中,与给定无穷小具有相同极限的其他无穷小。以下是一些常见的等价无穷小:

1. dX:微分符号表示的无穷小量,与dx具有相同的极限。

2. dt:在时间极限过程中,与dt同阶的无穷小量,如dx、dy、dz等表示微小位移的符号。

3. ε和δ:分别表示极限中的自变量和函数变化的微小增量,通常在极限定义中使用。

4. sinx、tanx和x:当x趋向于零时,这些无穷小量在极限过程中具有相同的极限。

5. x²和x³:当x趋向于零时,这些无穷小量在极限过程中具有相同的极限。

6. ln(1 + x)和x:当x趋向于零时,这两个无穷小量在极限过程中具有相同的极限。

需要注意的是,等价无穷小是相对的概念,即在特定的极限过程中,可以找到与给定无穷小等价的其他无穷小,但在其他极限过程中可能会有所不同。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式