高数导数题,求大神解答,谢谢?

 我来答
巨蟹windy2014bee53c8
2019-10-28 · TA获得超过4928个赞
知道大有可为答主
回答量:4791
采纳率:94%
帮助的人:428万
展开全部
首先给出此题的答案是:函数f(x)在x=0处连续且可导;
讨论如下:
按定义,判断函数在点x0是否连续和可导,只需判断f(x0-), f(x0+), f(x0)三者是否相等;且判断f‘(x0-)是否=f'(x0+),只有以上都满足了,则函数在x0处连续且可导。
因为题意的函数:f(x)=(1-cosx)/√x, x>0; f(x)=(x^2)g(x), x≤0 且给g(x)是有界函数,则
f(0+) = lim (1-cosx)/√x =0; f(0-) = f(0)= lim (x^2)g(x)=0; 即f(x)连续;
f'(0+) = lim (1 - cosx + xsinx)/(x√x) =0; f'(0+) = lim[2xg(x) + (x^2)g'(x)] =0 (因为g(x)有界,则g'(x)也为有界)
所以得结论 f(x)在x=0处连续且可导。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式