³√Cosx 的二阶导数怎么求
2个回答
展开全部
y = (cosx)^(1/3)
y' = (1/3)(cosx)^(-2/3)(-sinx) = (-1/3)sinx(cosx)^(-2/3)
y'' = (-1/3)(cosx)^(1/3) + (-1/3)sinx(-2/3)(cosx)^(-5/3)(-sinx)
= (-1/3)(cosx)^(1/3) - (2/9)(sinx)^2 (cosx)^(-5/3)
= (-1/9)[3(cosx)^2+2(sinx)^2]/(cosx)^(5/3)
= (-1/9)[2+(cosx)^2]/(cosx)^(5/3)
y' = (1/3)(cosx)^(-2/3)(-sinx) = (-1/3)sinx(cosx)^(-2/3)
y'' = (-1/3)(cosx)^(1/3) + (-1/3)sinx(-2/3)(cosx)^(-5/3)(-sinx)
= (-1/3)(cosx)^(1/3) - (2/9)(sinx)^2 (cosx)^(-5/3)
= (-1/9)[3(cosx)^2+2(sinx)^2]/(cosx)^(5/3)
= (-1/9)[2+(cosx)^2]/(cosx)^(5/3)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询