设X1=1,Xn=1+X(n-1)/[1+X(n-1)],证明Xn在n趋向于无穷大时极限存在,并求其值
1个回答
展开全部
首先证明数列xn是一个递增的数列,用递推法,假设x(n)>x(n-1),那么
x(n)/(x(n)+1)>x(n-1)/(x(n-1)+1) 所以 x(n+1)>x(n),而易求的x2>x1,因此xn是一个递增数列,故其所有项数都大于1
其次证明数列xn是有界的,易知x(n-1)/(x(n-1)+1)是小于1的,因此xn<2,故数列有界,而单调有界数列是有极限的,故xn极限存在
对xn求极限 由于x(n-1)/(x(n-1)+1)极限为1 故xn的极限为2
x(n)/(x(n)+1)>x(n-1)/(x(n-1)+1) 所以 x(n+1)>x(n),而易求的x2>x1,因此xn是一个递增数列,故其所有项数都大于1
其次证明数列xn是有界的,易知x(n-1)/(x(n-1)+1)是小于1的,因此xn<2,故数列有界,而单调有界数列是有极限的,故xn极限存在
对xn求极限 由于x(n-1)/(x(n-1)+1)极限为1 故xn的极限为2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询