求积分 ∫ √x²-9 / x dx

 我来答
教育小百科达人
2020-12-06 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:474万
展开全部

具体回答如下:

∫√x²-9/x²dx

=∫3tant/(3sect)^2 d3sect 

=∫tant /(sect)^2 sect tant dt

=∫ (sint)^2 /cost dt

=∫(sint)^2/(cost)^2 dsint 

令z=sint,则

=∫z^2/(1-z^2) dz 

= ∫-1 dz -∫1/(1-z^2)dz

=-z +0.5∫(1/(1-z) -1/(1+z)dz

=z+0.5ln[(1-z)/(1+z)] +C

扩展资料:

对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。这时候称函数f为黎曼可积的。

积分都满足一些基本的性质。 在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。

yjn3030

2018-12-23 · 超过20用户采纳过TA的回答
知道答主
回答量:45
采纳率:57%
帮助的人:5.2万
展开全部
integral sqrt(x^2 - 9)/x dx = sqrt(x^2 - 9) + 3 tan^(-1)(3/sqrt(x^2 - 9)) + constant
Take the integral:
integral sqrt(x^2 - 9)/x dx
For the integrand sqrt(x^2 - 9)/x, substitute x = 3 sec(u) and dx = 3 tan(u) sec(u) du. Then sqrt(x^2 - 9) = sqrt(9 sec^2(u) - 9) = 3 tan(u) and u = sec^(-1)(x/3):
= 3 integral tan^2(u) du
Write tan^2(u) as sec^2(u) - 1:
= 3 integral(sec^2(u) - 1) du
Integrate the sum term by term and factor out constants:
= 3 integral sec^2(u) du - 3 integral1 du
The integral of sec^2(u) is tan(u):
= 3 tan(u) - 3 integral1 du
The integral of 1 is u:
= 3 tan(u) - 3 u + constant
Substitute back for u = sec^(-1)(x/3):
= 3 tan(sec^(-1)(x/3)) - 3 sec^(-1)(x/3) + constant
Simplify using tan(sec^(-1)(z)) = sqrt(1 - 1/z^2) z:
= sqrt(x^2 - 9) - 3 sec^(-1)(x/3) + constant
Which is equivalent for restricted x values to:
Answer: |
| = sqrt(x^2 - 9) + 3 tan^(-1)(3/sqrt(x^2 - 9)) + constant
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
分守甫Q
2018-12-23 · TA获得超过1.4万个赞
知道小有建树答主
回答量:1099
采纳率:0%
帮助的人:155万
展开全部


换元法,分类讨论,希望对你有所帮助

追答
抱歉,我忘记反代回去了

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友2633415
2018-12-23 · TA获得超过164个赞
知道小有建树答主
回答量:300
采纳率:50%
帮助的人:124万
展开全部

不清楚的欢迎来问。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式