
求一下这道题的详细过程,谢谢
展开全部
设f(t)=kt+b,则:
∫(a,x)(kt+b)dt
=(k/2)t^2+bt|(a,x)
=(k/2)x^2+bx-(k/2)a^2-ab
=2x^2-3x+1
所以:
k/2=2,即k=4.
b=-3.
此时,f(x)=4x-3.
则:
-2a^2+3a=1
2a^2-3a+1=0
(2a-1)(a-1)=0
所以a=1或者a=1/2.
∫(a,x)(kt+b)dt
=(k/2)t^2+bt|(a,x)
=(k/2)x^2+bx-(k/2)a^2-ab
=2x^2-3x+1
所以:
k/2=2,即k=4.
b=-3.
此时,f(x)=4x-3.
则:
-2a^2+3a=1
2a^2-3a+1=0
(2a-1)(a-1)=0
所以a=1或者a=1/2.
展开全部
∫(a->x) f(t) dt = 2x^2-3x+1
let
f(t) = ct+d
∫(a->x) f(t) dt
=∫(a->x) (ct+d) dt
=[ (1/2)ct^2 +dt] |(a->x)
=(1/2)cx^2 +dx - [(1/2)ca^2+da]
∫(a->x) f(t) dt = 2x^2-3x+1
=>
coef.of x^2
(1/2)c = 2
c=4
coef. of x
d= -3
coef. of constant
-[(1/2)ca^2+da] = 1
(1/2)ca^2+da =-1
2a^2 -3a +1 =0
(2a-1)(a-1)=0
a=1 or 1/2
let
f(t) = ct+d
∫(a->x) f(t) dt
=∫(a->x) (ct+d) dt
=[ (1/2)ct^2 +dt] |(a->x)
=(1/2)cx^2 +dx - [(1/2)ca^2+da]
∫(a->x) f(t) dt = 2x^2-3x+1
=>
coef.of x^2
(1/2)c = 2
c=4
coef. of x
d= -3
coef. of constant
-[(1/2)ca^2+da] = 1
(1/2)ca^2+da =-1
2a^2 -3a +1 =0
(2a-1)(a-1)=0
a=1 or 1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询