高等数学微分中值定理的应用泰勒公式 30
66题我想用泰勒公式来证明。显而易见的有x∈(a,b),使得f(x)>0且f'(x)=0。然后将f(a)在这个点泰勒展开。问题的关键是如何用数学需要论述出存在这个点,没思...
66题我想用泰勒公式来证明。显而易见的有x∈(a,b),使得f(x)>0且f'(x)=0。然后将f(a)在这个点泰勒展开。问题的关键是如何用数学需要论述出存在这个点,没思路啊。总不能说显而易见存在这么个点吧?
展开
3个回答
2019-06-10 · 知道合伙人教育行家
关注
展开全部
二阶可导,说明一阶导数在(a,b)连续,
由罗尔中值定理,存在 c∈(a,b)使 f '(c) = 0,
f '(x) 在 [a,c] 上连续,在(a,c)上可导,由拉格朗日中值定理,
存在 ξ∈(a,c) 使 f ''(ξ) = [f '(c) - f '+(a)] / (c-a) < 0 。
由罗尔中值定理,存在 c∈(a,b)使 f '(c) = 0,
f '(x) 在 [a,c] 上连续,在(a,c)上可导,由拉格朗日中值定理,
存在 ξ∈(a,c) 使 f ''(ξ) = [f '(c) - f '+(a)] / (c-a) < 0 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
On the Mean Value Theorem and Taylor's formula
Mean Value Theorem and Taylor's formula is the basic formula of differential calculus, which constitute an important part of the basic theory of calculus. Mean Value Theorem is a advantaged(powerful) tool to research functions' own nature(properties) on the interval which take advantage of the properties of functions. It includes: Rolle theoreom; Lagrange mean value theorem; Cauchy Mean Value Theorem. Taylor's formula is an important in mathematical analysis, which is widely used in the calculation and proof of a number of important issues(problems). This article describes some of their applications.
Mean Value Theorem; Taylor formula; limits; inequalities.
单复数可以调整下,细节可以调整下,句型变化还有许多的。
Mean Value Theorem and Taylor's formula is the basic formula of differential calculus, which constitute an important part of the basic theory of calculus. Mean Value Theorem is a advantaged(powerful) tool to research functions' own nature(properties) on the interval which take advantage of the properties of functions. It includes: Rolle theoreom; Lagrange mean value theorem; Cauchy Mean Value Theorem. Taylor's formula is an important in mathematical analysis, which is widely used in the calculation and proof of a number of important issues(problems). This article describes some of their applications.
Mean Value Theorem; Taylor formula; limits; inequalities.
单复数可以调整下,细节可以调整下,句型变化还有许多的。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |