想问一下求极限用泰勒公式这么化简为什么不对? 20
2个回答
展开全部
x->0
分子
(sinx)^2 = x^2 +o(x^2)
e^x = 1+ x +(1/2)x^2 +o(x^2)
(sinx)^2 +e^x = 1+ x +(3/2)x^2 +o(x^2)
ln[(sinx)^2 + e^x]
=ln[1+ x +(3/2)x^2 +o(x^2)]
=[x +(3/2)x^2] -(1/2)[x +(3/2)x^2]^2 +o(x^2)
=[x +(3/2)x^2] -(1/2)[x^2 +o(x^2)] +o(x^2)
=x + x^2 +o(x^2)
ln[(sinx)^2 + e^x] -x = x^2 +o(x^2)
分母
e^(2x) = 1+ 2x + 2x^2 +o(x^2)
(sinx)^2 + e^x = 1+ 2x + 3x^2 +o(x^2)
ln[x^2+e^(2x)]
=ln[1+ 2x + 3x^2 +o(x^2)]
=[2x + 3x^2 ] -(1/2)[2x + 3x^2 ]^2 +o(x^2)
=[2x + 3x^2 ] -(1/2)[4x^2+o(x^2)] +o(x^2)
=2x + x^2 +o(x^2)
ln[x^2+e^(2x)] -2x = x^2 +o(x^2)
/
lim(x->0) {ln[ (sinx)^2 + e^x ] -x }/{ ln[x^2+e^(2x)] -2x }
=lim(x->0) x^2/x^2
=1
分子
(sinx)^2 = x^2 +o(x^2)
e^x = 1+ x +(1/2)x^2 +o(x^2)
(sinx)^2 +e^x = 1+ x +(3/2)x^2 +o(x^2)
ln[(sinx)^2 + e^x]
=ln[1+ x +(3/2)x^2 +o(x^2)]
=[x +(3/2)x^2] -(1/2)[x +(3/2)x^2]^2 +o(x^2)
=[x +(3/2)x^2] -(1/2)[x^2 +o(x^2)] +o(x^2)
=x + x^2 +o(x^2)
ln[(sinx)^2 + e^x] -x = x^2 +o(x^2)
分母
e^(2x) = 1+ 2x + 2x^2 +o(x^2)
(sinx)^2 + e^x = 1+ 2x + 3x^2 +o(x^2)
ln[x^2+e^(2x)]
=ln[1+ 2x + 3x^2 +o(x^2)]
=[2x + 3x^2 ] -(1/2)[2x + 3x^2 ]^2 +o(x^2)
=[2x + 3x^2 ] -(1/2)[4x^2+o(x^2)] +o(x^2)
=2x + x^2 +o(x^2)
ln[x^2+e^(2x)] -2x = x^2 +o(x^2)
/
lim(x->0) {ln[ (sinx)^2 + e^x ] -x }/{ ln[x^2+e^(2x)] -2x }
=lim(x->0) x^2/x^2
=1
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询