图像视觉算法(深度学习)和SLAM算法哪个更有前景啊?
vSALM(Visual SLAM)能够在跟踪摄像机(用于AR的手持或者头盔,或者装备在机器人上)位置和方位的同时构建三维地图. SLAM算法与ConvNets和深度学习是互补的。SLAM关注几何问题,而深度学习主要关注识别问题。如果你想让机器人走到冰箱面前而不撞到墙,就用SLAM。如果你想让机器人识别冰箱里的物品,就用ConvNets。http://openmvg.readthedocs.io/en/latest/
SLAM相当于实时版本的SFM(Structure From Motion)。vSLAM使用摄像机,放弃了昂贵的激光传感器和惯性传感器(IMU)。单目SLAM使用单个相机,而非单目SLAM通常使用预先标定好的固定基线的立体摄像机。SLAM是基于几何方法的计算机视觉的一个主要的例子。事实上,CMU(卡内基梅陇大学)的机器人研究机构划分了两个课程:基于学习方法的视觉和基于几何方法的视觉。
SFM vs vSLAM
SFM和SLAM解决的是相似的问题,但SFM是以传统的离线的方式来实现的。SLAM慢慢地朝着低功耗,实时和单个RGB相机模式发展。下面是一些流行的开源SFM软件库。
Bundler: 一个开源SFM工具箱,http://www.cs.cornell.edu/~snavely/bundler/
Libceres: 一个非线性最小二乘法库(对bundle adjustment问题非常有用),http://ceres-solver.org/
Andrew Zisserman's多视图几何Matlab函数库,http://www.robots.ox.ac.uk/~vgg/hzbook/code/
vSLAM vs 自动驾驶
自动驾驶汽车是SLAM最重要的一个应用领域。未来很多年里,在自动驾驶领域将持续地研究SLAM。
2024-11-04 广告