设f(x)在[0,1]上有二阶连续导数,证明:∫^(0,1)f(x)dx=1/2 (f(0)+f(1))- 1/2 ∫^(0,1)x(1-x)f"(x)dx

 我来答
司马晚竹广丁
2020-02-06 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:35%
帮助的人:834万
展开全部
f(0)=f(x)+f'(x)(0-x)+0.5f''(a)(0-x)^2
f(1)=f(x)+f'(x)(1-x)+0.5f''(b)(1-x)^2
两式相减,移项,取绝对值得|f'(x)|=|f(1)-f(0)+0.5f''(a)x^2-0.5f''(b)(1-x)^2|<=
|f(1)-f(0)|+0.5a(x^2+(1-x)^2)<=|f(1)-f(0)|+0.5a,最后不等式是因为二次函数x^2+(1-x)^2在【0
1】上的最大值是1
千振华希绫
2020-01-23 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.4万
采纳率:35%
帮助的人:902万
展开全部
用分部积分法.
∫^(0,1)x(1-x)f"(x)dx
(u=
x(1-x)
v'=
f''(x)
u'
=1-2x
v=
f'(x)
=[x(1-x)
f'(x)
]
(0,1)
-
∫^(0,1)(1-2x)f'(x)dx
再设u1=
1-2x
v1
=
f'(x)
(u1)'
=-2
(v1)'=
f(x)
=
0
-
(1-
2x)
f(x)
(0,1)
-
2
∫^(0,1)f(x)dx
=f(1)
+f(0)
-2
∫^(0,1)fx)dx
移项,整理即得::∫^(0,1)f(x)dx=1/2
(f(0)+f(1))-
1/2
∫^(0,1)x(1-x)f"(x)
其中:[x(1-x)
f'(x)
]
(0,1)
表示:函数[x(1-x)
f'(x)
]
在x=1的值减去它在
x=0的值.另处类似.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式