若△ABC的三边a、b、c满足a²+b²+c²+338=10a+24b+26c,求△ABC的面积。

 我来答
节墨彻姬淑
2020-01-30 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:29%
帮助的人:713万
展开全部
解:
原式可化为
a²+b²+c²+338=10a+24b+26c
a²+b²+c²+338-(10a+24b+26c)=0
a²+b²+c²+338-(10a+24b+26c)
=(a-5)^2+(b-12)^2+(c-13)^2=0
a-5=0
b-12=0
c=13=0
a=5,b=12,c=13
5^2+12^2=13^2
a^2+b^2=c^2
ABC的形状为直角三角形
所以S=1/2*5*12=30
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式