伽马函数的一些特殊函数值? 比如(0)、(1/2)等

 我来答
帐号已注销
2021-01-17 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:188万
展开全部

Γ(x)称为伽玛函数,它是用一个积分式定义的,不是初等函数

伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!

例如:

(a-1)]/[1 X}dx如何Γ(x 1)=xΓ(x),Γ(0)=1

^Γ(1/2)=int(e^x/sqrt(x),x=0..+无穷)

(就是x^(1/2-1)*e^x从0到正无穷的积分)

换元积分,令sqrt(x)=t,则

e^x/sqrt(x)=e^(t^2)/t

x=t^2,dx=2tdt

由x的范围可知t的范围也是0到正无穷

所以

Γ(1/2)=int(e^(t^2)*2t/t,t=0..+无穷)

=int(2e^(t^2),t=0..+无穷)

扩展资料:

对1/(1-x)进行离散与连续展开,有

1/(1-x)=

∑xk

=∫e^-(1-x)tdt

=∫e-t∑(xt)k/k!dt

=∑(∫e-ttkdt)xk/k!

对比系数有k!=∫e-ttkdt

x在收敛域(-1,1)内,求和积分均在0到+∞

最后的积分中我们可以让k取任意实数,这样我们就把阶乘延拓到实数集中了

参考资料来源:百度百科-伽马函数

顾洲奕平露
2020-01-08 · TA获得超过1193个赞
知道小有建树答主
回答量:2889
采纳率:92%
帮助的人:16.3万
展开全部
Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数.
伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式