
伽马函数的一些特殊函数值? 比如(0)、(1/2)等
2个回答
展开全部
Γ(x)称为伽玛函数,它是用一个积分式定义的,不是初等函数。
伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!
例如:
(a-1)]/[1 X}dx如何Γ(x 1)=xΓ(x),Γ(0)=1
^Γ(1/2)=int(e^x/sqrt(x),x=0..+无穷)
(就是x^(1/2-1)*e^x从0到正无穷的积分)
换元积分,令sqrt(x)=t,则
e^x/sqrt(x)=e^(t^2)/t
x=t^2,dx=2tdt
由x的范围可知t的范围也是0到正无穷
所以
Γ(1/2)=int(e^(t^2)*2t/t,t=0..+无穷)
=int(2e^(t^2),t=0..+无穷)
扩展资料:
对1/(1-x)进行离散与连续展开,有
1/(1-x)=
∑xk
=∫e^-(1-x)tdt
=∫e-t∑(xt)k/k!dt
=∑(∫e-ttkdt)xk/k!
对比系数有k!=∫e-ttkdt
x在收敛域(-1,1)内,求和积分均在0到+∞
最后的积分中我们可以让k取任意实数,这样我们就把阶乘延拓到实数集中了
参考资料来源:百度百科-伽马函数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |