若定义域为[0,1]的函数f(x)存在反函数
1.已知定义域在R上的函数y=f(x)存在反函数f^-1(X),若函数y=f(x+1)的反函数是y=f^-1(x-1),且f(0)=1,则f(12)=?2.已知函数f(x...
1.已知定义域在R上的函数y=f(x)存在反函数f^-1(X),若函数y=f(x+1)的反函数是y=f^-1(x-1),且f(0)=1,则f(12)=?
2.已知函数f(x)=x^4+ax^3+bx^2+ax+1,若函数a,b使得f(x)=0有实根,则a^2+b^2的最小值为? 展开
2.已知函数f(x)=x^4+ax^3+bx^2+ax+1,若函数a,b使得f(x)=0有实根,则a^2+b^2的最小值为? 展开
展开全部
第一题:
y=f^(-1)(x-1)两边求函数有f(y)=x-1,变量互换可得原函数为
f(x)=y-1即y=f(x)+1.
所以y=f(x+1)=f(x)+1,那么f(x+12)=f(x)+12
f(12)=f(0)+12=13.
第二题:
由 x^4+ax^3+bx^2+ax+1=0 两边同时处以x^2
得到 (x^2+1/x^2)+a(x+1/x)+b=0,
变量代换 令m=x+1/x (|m|≥2)
则 m^2+am+b-2=0
对称轴 x=-a/2.定义域|m|>=2.
然后对称轴在x
y=f^(-1)(x-1)两边求函数有f(y)=x-1,变量互换可得原函数为
f(x)=y-1即y=f(x)+1.
所以y=f(x+1)=f(x)+1,那么f(x+12)=f(x)+12
f(12)=f(0)+12=13.
第二题:
由 x^4+ax^3+bx^2+ax+1=0 两边同时处以x^2
得到 (x^2+1/x^2)+a(x+1/x)+b=0,
变量代换 令m=x+1/x (|m|≥2)
则 m^2+am+b-2=0
对称轴 x=-a/2.定义域|m|>=2.
然后对称轴在x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询