求极限lim(x->0){3e^[x/(x-1)]-2}^(1/x),
1个回答
展开全部
令 t= x/(x-1),1/x= 1 - 1/t ,Limit [ x/(x-1),x->0] =0
原式 = Limit [ (3 e^t -2 ) ^ (1-1/t ),t->0]
= Limit [ ( 1 + 3 (e^t -1) ) ^ (1-1/t ),t->0]
e^t -1 t
上式 = Limit [ ( 1 + 3 t ) ^ (1-1/ t ),t->0]
= Limit [ ( 1 + 3 t ) / (1+3t)^(1/ t ),t->0]
= 1/ e^3 = e^(-3)
原式 = Limit [ (3 e^t -2 ) ^ (1-1/t ),t->0]
= Limit [ ( 1 + 3 (e^t -1) ) ^ (1-1/t ),t->0]
e^t -1 t
上式 = Limit [ ( 1 + 3 t ) ^ (1-1/ t ),t->0]
= Limit [ ( 1 + 3 t ) / (1+3t)^(1/ t ),t->0]
= 1/ e^3 = e^(-3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询