问一道高等数学积分题 ∫(x^3*arccosx/√(1-x^2))dx

 我来答
孝思焉语芹
2020-07-15 · TA获得超过1107个赞
知道小有建树答主
回答量:1830
采纳率:100%
帮助的人:8.3万
展开全部
∫(x^3*arccosx/√(1-x^2))dx
令t=arccosx t∈(0,π)
则原式=∫(cost)^3*t/sintdcost=-∫(cost)^3*tdt
=-∫(cost)^2cost*tdt=-∫[1-(sint)^2]cost*tdt
=-∫[1-(sint)^2]cost*tdt
=-∫cost*tdt+∫(sint)^2cost*tdt+∫sintdt-∫sintdt
=-∫(sint+cost*t)dt+∫(sint)^2cost*tdt+∫sintdt
=-tsint-cost+∫(sint)^2cost*tdt
=-tsint-cost+∫sin2tsint*t/2dt
=-tsint-cost-∫sin2t(-sint)*t/2dt+∫sin2tcost/2dt
-∫sin2tcost/2dt+∫cos2tcost*t-∫cos2tcost*t
=-tsint-cost-(∫sin2t(-sint)*t/2dt+∫sin2tcost/2dt
+∫cos2tcost*tdt)+∫sin2tcost/2dt+∫cos2tcost*tdt
=-tsint-cost-sin2tcost*t/2+∫sin2tcost/2dt+∫cos2tcost*tdt
=-tsint-cost-sin2tcost*t/2+∫sintcostcostdt
+∫(cost^2-sint^2)cost*tdt
=-tsint-cost-sin2tcost*t/2-∫costcostdcost
+∫(2cost^2-1)cost*tdt
=-tsint-cost-sin2tcost*t/2-cost^3/3+2∫(cost)^3*tdt-∫cost*tdt
=-tsint-cost-sin2tcost*t/2-cost^3/3+2∫(cost)^3*tdt-∫cost*tdt
-∫sintdt+∫sintdt
=-tsint-cost-sin2tcost*t/2-cost^3/3+2∫(cost)^3*tdt
-∫(cost*t+sint)dt+∫sintdt
=-tsint-cost-sin2tcost*t/2-cost^3/3+2∫(cost)^3*tdt
-tsint-cost
这时得
-3∫(cost)^3*tdt=-2tsint-2cost-cost^3/3-sin2tcost*t/2
则-∫(cost)^3*tdt=(-2tsint-2cost-sin2tcost*t/2-cost^3/3)/3
在把t代换成x即可
在网吧里 没有纸笔 一步一步想出来的 自己都觉得烦似乎走了弯路不知道中间有没有错 我现在只能写到这啦…………………………
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式