设二维随机变量(X,Y)的概率密度为:f(x,y)=12y^2,0
展开全部
EX=∫∫[0<=y<=x<=1] xf(x,y)dxdy=∫[0->1]∫[0->x] 12xy²dydx=4/5
EY=∫∫[0<=y<=x<=1] yf(x,y)dxdy=∫[0->1]∫[0->x] 12y³dydx=3/5
E(X²+Y²)=∫∫[0<=y<=x<=1] (x²+y²)f(x,y)dxdy=∫[0->1]∫[0->x] 12x²y²+12y^4dydx=16/15
扩展资料
按照随机变量可能取得的值,可以把它们分为两种基本类型:
离散型
离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
连续型
连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |