设两个n阶方阵a与b相似,则一定有

若同阶方阵A与B相似,下面正确的是()A.A与B有相同的特征值和特征向量B.A与B都相似于一个对角矩阵...若同阶方阵A与B相似,下面正确的是()A.A与B有相同的特征值... 若同阶方阵A与B相似,下面正确的是() A.A与B有相同的特征值和特征向量 B.A与B都相似于一个对角矩阵...
若同阶方阵A与B相似,下面正确的是()
A.A与B有相同的特征值和特征向量
B.A与B都相似于一个对角矩阵
C.aE-A=aE-B
D.对于任意常数t,tE-A与tE-B相似
展开
 我来答
茹翊神谕者

2021-01-21 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1611万
展开全部

D选项是正确的,详情如图所示

母题是这个

宫浦桂绍祺
2019-04-09 · TA获得超过1182个赞
知道小有建树答主
回答量:1789
采纳率:100%
帮助的人:8.5万
展开全部
D 正确.
A不对,相似则特征值相同,但特征向量不一定相同
B不对,两个矩阵不一定可对角化
C不对,特征矩阵不一定相同
只有D对了,若 P^-1AP=B,则 P^-1(tE-A)P = tE-P^-1AP = tE-B.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式