无界和无穷大的区别是什么?
1、定义不同:
说函数无界是指任意G>0,都有x,st,f(x)>G.说的是函数整体性质。函数可以点点取值都有限,但是函数整体无界。
无穷大是在实直线上补充定义的一个抽象的数(定义了正负无穷后成为扩充实直线),x=正无穷是指x比任意数都大。在扩充实直线上可以定义和无穷有关的运算。当然函数可以取值为无穷。这时函数一定是无界的。
二、界限不同:
无穷大是局部的,无界是整体的。
举例说明如下:
f(x)=1/x,这个函数在x=0点就是无穷大。
f(x)=1/x在区间内有界,因为在这个区间内函数值的绝对值都小于1;在区间(0,1)内无界,因为不管说一个多大的正数M,总有函数值比M要大。
学数学技巧
1、抓住课堂。理科学习重在平日功夫,不适于突击复习。平日学习最重要的是课堂45分钟,听讲要聚精会神,思维紧跟老师。高质量完成作业。写作业时,有时同一类型的题重复练习,这时就要有意识的考查速度和准确率,并且在每做完一次时能够对此类题目有更深层的思考。
2、对不会做的错题:弄懂每一个步骤,并思考为什么,针对算错了的错题,如果经常出现这样的情况那么你就要:改变计算方式和习惯,比如学会检查和算两次提高准确度。
重点是要去思考,思考的深度越深,学习得就更加透彻,就会用少量的题达到很高的效果。但这样的思考不是凭空的,而是建立在错题上的思考。