有界函数有极限吗?
1个回答
展开全部
有界函数不一定有极限。有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
有界函数并不一定是连续的。根据定义,ƒ在D上有上(下)界,则意味着值域ƒ(D)是一个有上(下)界的数集。根据确界原理,ƒ在定义域上有上(下)确界。
一个特例是有界数列,其中X是所有自然数所组成的集合N。由ƒ(x)=sinx所定义的函数f:R→R是有界的。当x越来越接近-1或1时,函数的值就变得越来越大。
函数的性质:
1、单调性
2、连续性
闭区间上的连续函数必有界。其逆命题不成立。
3、可积性
闭区间上的可积函数必有界。其逆命题不成立。
以上内容参考 百度百科—有界函数
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询