先化简,在求值:(x+根号xy)/(y+根号xy)+((根号xy)-y)/(x-根号xy),其中x=根号3+1,y=根号3-1
先化简,再求值:(x+根号xy)/(y+根号xy)+((根号xy)-y)/(x-根号xy),其中x=根号3+1,y=根号3-1...
先化简,再求值:(x+根号xy)/(y+根号xy)+((根号xy)-y)/(x-根号xy),其中x=根号3+1,y=根号3-1
展开
3个回答
展开全部
[x+√(xy)]/[y+√(xy)]+[(√(xy)-y]/[x-√(xy)]
=√x(√x+√y)/[√y(√y+√x)]+√y(√x-√y)/[√x(√x-√y)]
=√x/√y+√y/√x
=x/√(xy)+y/√(xy)
=(x+y)/√(xy)
=(√3+1+√3-1)/√[(√3+1)(√3-1)]
=2√3/2
=√3
=√x(√x+√y)/[√y(√y+√x)]+√y(√x-√y)/[√x(√x-√y)]
=√x/√y+√y/√x
=x/√(xy)+y/√(xy)
=(x+y)/√(xy)
=(√3+1+√3-1)/√[(√3+1)(√3-1)]
=2√3/2
=√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(x+√xy)/(y+√xy)+(√xy-y)/(x-√xy)
=[(x+√xy)×(x-√xy)+(√xy-y)×(y+√xy)]/[(y+√xy)×(x-√xy)]
=(x²-xy+xy-y²)/(xy+x√xy-y√xy-xy)
=(x²-y²)/[(x-y)√xy]
=(x-y)(x+y)/[(x-y)√xy]
=(x+y)/√xy
=(√3+1+√3-1)/√(√3+1)(√3-1)
=2√3/√2
=√6
=[(x+√xy)×(x-√xy)+(√xy-y)×(y+√xy)]/[(y+√xy)×(x-√xy)]
=(x²-xy+xy-y²)/(xy+x√xy-y√xy-xy)
=(x²-y²)/[(x-y)√xy]
=(x-y)(x+y)/[(x-y)√xy]
=(x+y)/√xy
=(√3+1+√3-1)/√(√3+1)(√3-1)
=2√3/√2
=√6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询