相似矩阵的性质是什么?

 我来答
霓脦那些
高能答主

2021-04-05 · 致力于成为全知道最会答题的人
知道小有建树答主
回答量:74
采纳率:100%
帮助的人:2.4万
展开全部

性质

相似变换是矩阵之间的一种等价关系,也就是说满足:

1、反身性:任意矩阵都与其自身相似。

2、对称性:如果A和B相似,那么B也和A相似。

3、传递性:如果A和B相似,B和C相似,那么A也和C相似。

矩阵间的相似关系与所在的域无关:设K是L的一个子域,A和B是两个系数在K中的矩阵,则A和B在K上相似当且仅当它们在L上相似。这个性质十分有用:在判定两个矩阵是否相似时,可以随意地扩张系数域至一个代数闭域,然后在其上计算若尔当标准形。

如果两个相似矩阵A和B之间的转换矩阵P是一个置换矩阵,那么就称 A和B“置换相似”。 如果两个相似矩阵A和B之间的转换矩阵P是一个酉矩阵,那么就称 A和B“酉相似”。谱定理证明了每个正规矩阵都酉相似于某个对角矩阵

扩展资料:

相似变换下的不变性质

两个相似的矩阵有许多相同的性质:

1、两者的秩相等。

2、两者的行列式值相等。

3、两者的迹数相等。

4、两者拥有同样的特征值,尽管相应的特征向量一般不同。

5、两者拥有同样的特征多项式

6、两者拥有同样的初等因子

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式