使用洛必达法则的条件是什么?
2个回答
2022-12-01 · 百度认证:北京惠企网络技术有限公司官方账号
关注
展开全部
三个条件。\r\n 1 分子分母同趋向于0或无穷大 。\r\n 2 在变量所趋向的值的去心邻域内,分子和分母均可导 。\r\n 3 分子和分母分别求完导后比值存在或趋向于无穷大。\r\n 洛必达法则(L'Hôpital's rule)是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。法国数学家洛必达(Marquis de l'Hôpital)在他1696年的著作《阐明曲线的无穷小分析》(Analyse des infiniment petits pour l'intelligence des lignes courbes)发表了这法则,因此以他为命名。但一般认为这法则是由瑞士数学家约翰·伯努利(Johann Bernoulli)首先发现,因此也被叫作伯努利法则(Bernoulli's rule)。
展开全部
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。
如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。
介绍
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。众所周知,两个无穷小之比或两个无穷大之比的极限可能存在,也可能不存在。
因此,求这类极限时往往需要适当的变形,转化成可利用极限运算法则或重要极限的形式进行计算。洛必达法则便是应用于这类极限计算的通用方法。
纪尧姆·弗朗索瓦·安托万·洛必达侯爵(Guillaume François Antoine, Marquis de l'Hôpital,1661年-1704年2月2日),又音译为罗必塔(L'Hôpital)。法国数学家,伟大的数学思想传播者。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询