如图,在等边三角形ABC中,D,E分别是BC,AC上一点.AE=CD.AD与BE相交于点F,AF=1/2

 我来答
青柠姑娘17
2022-05-19 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6765
采纳率:100%
帮助的人:39.3万
展开全部
原题是这个吧:在等边三角形ABC中,D,E分别是BC、AC上一点,AE=CD,AD与BE交与点F,AF=1\2BF.求证:CF垂直BE
取BF中点P,连接CP交AD于Q
则:AF=BF/2=BP
因为:AE=CD,AC=AB,∠C=∠A=∠B
所以:△ABE≌△ADC,△ABD≌△BCE
所以:∠AEB=∠ADC,∠BAF=∠CBE
所以:△AEF∽△ADC
所以:∠C=∠AFE=PFQ=60°
因为:AF=BP,∠BAF=∠CBE,AB=BC
所以:△ABF≌△BPC
所以:BF=PC,∠AFB=∠BPC
因为:∠AFE=180°-∠AFB=180°-∠BPC=∠QPF=60°
所以:三角形PQF为等边三角形FQ=PQ=PC/2
所以:FQ为RT三角形PQF斜边中线
所以:CF垂直BE
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式