为什么可导不一定可微?

 我来答
热爱生活的小斌
高能答主

2022-01-02 · 我们生活在比较之中,有黑暗才有光明。
热爱生活的小斌
采纳数:779 获赞数:21562

向TA提问 私信TA
展开全部

因为对一元函数来讲,可导必可微,可微必可导。但对多元函数来讲,可微是可偏导的充分不必要条件

可微是总体的、一般的、关于多的性质,可导是单一的、特殊的、关于“多”中的一的性质。一般成立,特殊必然成立;特殊成立,一般不一定成立,但特殊是一般的基础。在一元函数框架下,多即是一,那么特殊和一般在此条件下得到了统一。

可微条件

1、必要条件

若函数在某点可微分,则函数在该点必连续;若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。

2、充分条件

若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。

中智咨询
2024-08-28 广告
在当今竞争激烈的商业环境中,企业需要不断提高自身的竞争力,以保持市场份额和增加利润。通过人效提升,企业可以更有效地利用有限的资源,提高生产力和效益,从而实现盈利目标。中智咨询提供全方位的组织人效评价与诊断、人效提升方案等数据和管理咨询服务。... 点击进入详情页
本回答由中智咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式