设﹛Xn﹜满足-1<X0<0,Xn+1=Xn∧2+2Xn(n=0,1,2,…),证明﹛Xn﹜收敛,并求极限

 我来答
大沈他次苹0B
2022-05-27 · TA获得超过7349个赞
知道大有可为答主
回答量:3059
采纳率:100%
帮助的人:180万
展开全部
Xn+1=Xn∧2+2Xn=(xn+1)^2-1>=-1xn有下界-1由于Xn+1=Xn∧2+2Xnxn+1-xn=xn^2+xn=xn(xn+1)所以Xn=Xn-1∧2+2Xn-1利用数学归纳x1=x0^2+2x0=(x0+1)^2-11. x1-x0=x0^2+x0=x0(x0+1)-1即xn+xn-1+2>0所以Xn+1-xn=(xn-xn-1)(xn...
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式