什么是共轭复数?
1个回答
展开全部
非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。
共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。
共轭复根求解公式:
通常出现在一元二次方程中。若根的判别式△=b2-4ac<0, ,方程有一对共轭复根。
根据一元二次方程求根公式韦达定理:x1,2=-b±√b2-4ac/2a,当b2-4ac<0时, 方程无实根,但在复数范围内有2个复根。复根的求法为x1,2=-b±i√4ac-b2/2a(其中i是虚数,i2=-1)。
由于共轭复数的定义是形如a±bi(b≠0)的形式,称a+bi与a-bi(b≠0)为共轭复数。
另一种表达方法可用向量法表达:x1=pejΩ,x2=pe-jΩ其中p=√a2+b2,tanΩ=b/a。
由于一元二次方程的两根满足上述形式,故一元二次方程在b2-4ac<0时的两根为共轭复根。
根与系数关系:x1+x2=-b/a,x1+x2=c/a。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询