已知函数f(x)=2sinx/4cosx/4+根3cosx/2(1)求函数最小正周期及最值
展开全部
解:
f(x)=2sin(x/4)cos(x/4)+√3cos(x/2)
=sin(x/2)+√3cos(x/2)
=2sin(x/2 +π/3)
最小正周期是T=2π/(1/2)=4π
最大值是2,最小值是-2
g(x)
=f(x+π/3)
=2sin(x/2 +2π/3)
=2cos(x/2+π/6)
g(-x)=2cos(-x/2 +π/6)=2cos(x/2 -π/6)
g(x)=2cos(x/2 +π/6)
g(x)+g(-x)=2*[2cos(x/2)cos(π/6)]=2√3*cos(x/2)≠0
∴g(x)≠g(-x),且g(-x)≠-g(x)
所以g(x)是非奇非偶函数
谢谢
f(x)=2sin(x/4)cos(x/4)+√3cos(x/2)
=sin(x/2)+√3cos(x/2)
=2sin(x/2 +π/3)
最小正周期是T=2π/(1/2)=4π
最大值是2,最小值是-2
g(x)
=f(x+π/3)
=2sin(x/2 +2π/3)
=2cos(x/2+π/6)
g(-x)=2cos(-x/2 +π/6)=2cos(x/2 -π/6)
g(x)=2cos(x/2 +π/6)
g(x)+g(-x)=2*[2cos(x/2)cos(π/6)]=2√3*cos(x/2)≠0
∴g(x)≠g(-x),且g(-x)≠-g(x)
所以g(x)是非奇非偶函数
谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询