3个回答
展开全部
f(x)=e^x+ax+b
f'(x)=e^x+a
f''(x)=e^x>0,f'(x)单增,
分情况讨论:
(1)a≤-e²,在[1,2]上,f'(x)<0,f(x)单减,
f[1]≥0,f[2]≤0
e+a+b≥0
e²+2a+b≤0
a≤-e²
在横轴为a,竖轴为b在平面上,作直线l1:e+a+b=0,l2:e²+2a+b=0,l3:a=-e²
l1之上,l2之下,l3之左,一个开放的区域,a∈(-∞,-e²],b∈[-e+e²,+∞)
所以a²+b²,可以趋近于∞.没有最大值.
但是有最小值,a=-e²,b=-e+e²,a²+b²=e^4+e^4-2e³+e²=2e^4-2e³+e²
f'(x)=e^x+a
f''(x)=e^x>0,f'(x)单增,
分情况讨论:
(1)a≤-e²,在[1,2]上,f'(x)<0,f(x)单减,
f[1]≥0,f[2]≤0
e+a+b≥0
e²+2a+b≤0
a≤-e²
在横轴为a,竖轴为b在平面上,作直线l1:e+a+b=0,l2:e²+2a+b=0,l3:a=-e²
l1之上,l2之下,l3之左,一个开放的区域,a∈(-∞,-e²],b∈[-e+e²,+∞)
所以a²+b²,可以趋近于∞.没有最大值.
但是有最小值,a=-e²,b=-e+e²,a²+b²=e^4+e^4-2e³+e²=2e^4-2e³+e²
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
您好,求最值问题有以下几种方法和思路。
一,求二次函数(抛物线)的顶点。
二,运用基本不等式和重要不等式解题。
三,将函数求导,令f’(x)=0,求极值,再考虑定义域的端点,比较极值和端点的大小,即可求得函数最值。
一,求二次函数(抛物线)的顶点。
二,运用基本不等式和重要不等式解题。
三,将函数求导,令f’(x)=0,求极值,再考虑定义域的端点,比较极值和端点的大小,即可求得函数最值。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2022-04-24 · 百度认证:上海万通职业技能培训官方账号,教育领域创作者
关注
展开全部
f(x)=e^x+ax+b
f'(x)=e^x+a
f''(x)=e^x>0,f'(x)单增,
分情况讨论:
(1)a≤-e²,在[1,2]上,f'(x)<0,f(x)单减,
f[1]≥0,f[2]≤0
e+a+b≥0
e²+2a+b≤0
a≤-e²
在横轴为a,竖轴为b在平面上,作直线l1:e+a+b=0,l2:e²+2a+b=0,l3:a=-e²
l1之上,l2之下,l3之左,一个开放的区域,a∈(-∞,-e²],b∈[-e+e²,+∞)
所以a²+b²,可以趋近于∞.没有最大值.
但是有最小值,a=-e²,b=-e+e²,a²+b²=e^4+e^4-2e³+e²=2e^4-2e³+e²
f'(x)=e^x+a
f''(x)=e^x>0,f'(x)单增,
分情况讨论:
(1)a≤-e²,在[1,2]上,f'(x)<0,f(x)单减,
f[1]≥0,f[2]≤0
e+a+b≥0
e²+2a+b≤0
a≤-e²
在横轴为a,竖轴为b在平面上,作直线l1:e+a+b=0,l2:e²+2a+b=0,l3:a=-e²
l1之上,l2之下,l3之左,一个开放的区域,a∈(-∞,-e²],b∈[-e+e²,+∞)
所以a²+b²,可以趋近于∞.没有最大值.
但是有最小值,a=-e²,b=-e+e²,a²+b²=e^4+e^4-2e³+e²=2e^4-2e³+e²
学铁路列车乘务
技能+就业
汽车维修课程
技能+就业
焊工培训+考证
短期技能精修
PLC编程培训
培训+考证
查
看
更
多
- 官方电话
- 在线客服
-
官方服务
- 官方网站
- 招生简章
- 获取学费
- 专业开设
- 在线课堂
- 预约参观
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询